22 恒成立问题——数形结合法

22 恒成立问题——数形结合法_第1页
22 恒成立问题——数形结合法_第2页
22 恒成立问题——数形结合法_第3页
微专题22恒成立问题——数形结合法一、基础知识:1、函数的不等关系与图像特征:(1)若,均有的图像始终在的下方(2)若,均有的图像始终在的上方2、在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3、要了解所求参数在图像中扮演的角色,如斜率,截距等4、作图时可“先静再动”,先作常系数的函数的图像,再做含参数函数的图象(往往随参数的不同取值而发生变化)5、在作图时,要注意草图的信息点尽量完备6、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图像变换作图(2)所求的参数在图像中具备一定的几何含义(3)题目中所给的条件大都能翻译成图像上的特征二、典型例题:例1:已知不等式在上恒成立,则实数的取值范围是_________思路:本题难于进行参变分离,考虑数形结合解决,先作出的图像,观察图像可得:若要使不等式成立,则的图像应在的上方,所以应为单增的对数函数,即,另一方面,观察图像可得:若要保证在时不等式成立,只需保证在时,即可,代入可得:,综上可得:1答案:小炼有话说:(1)通过常系数函数图像和恒成立不等式判断出对数函数的单调性,进而缩小了参数讨论的取值范围。(2)学会观察图像时要抓住图像特征并抓住符合条件的关键点(例如本题中的)(3)处理好边界值是否能够取到的问题例2:若不等式对于任意的都成立,则实数的取值范围是___________思路:本题选择数形结合,可先作出在的图像,扮演的角色为对数的底...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

发表评论取消回复

参与评论可获取积分奖励  
悟空文库+ 关注
实名认证
内容提供者

悟空文库-海量文档资源下载,专业/极致/认真

确认删除?
回到顶部