微专题20多元不等式的证明多元不等式的证明是导数综合题的一个难点,其困难之处如何构造合适的一元函数,本章节以一些习题为例介绍常用的处理方法。一、基础知识1、在处理多元不等式时起码要做好以下准备工作:(1)利用条件粗略确定变量的取值范围(2)处理好相关函数的分析(单调性,奇偶性等),以备使用2、若多元不等式是一个轮换对称式(轮换对称式:一个元代数式,如果交换任意两个字母的位置后,代数式不变,则称这个代数式为轮换对称式),则可对变量进行定序3、证明多元不等式通常的方法有两个(1)消元:①利用条件代入消元②不等式变形后对某多元表达式进行整体换元(2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与自变量大小来证明不等式(3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法。二、典型例题:例1:已知,其中图像在处的切线平行于轴(1)确定与的关系(2)设斜率为的直线与的图像交于,求证:解:(1),依题意可得:(2)思路:,所证不等式为即,进而可将视为一个整体进行换元,从而转变为证明一元不等式1解:依题意得,故所证不等式等价于:令,则只需证:先证右边不等式:令在单调递减即对于左边不等式:令,则在单调递增小炼有话说:(1)在证明不等式时,由于独立取值,无法利用等量关系消去一个变量,所以考虑构造表达式:使得不等式以为研究对象,再利用换元将多元不等式转变为一元不等式(2)所证不等式为轮换对称式时,若独立取值,可对定序,从而增加一个可操作的条件例2:已知函数.(1)求的单调区间和极值;2(2)设,且,证明...
发表评论取消回复