微专题15函数的单调区间单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。一、基础知识:1、函数的单调性:设的定义域为,区间,若对于,有,则称在上单调递增,称为单调递增区间。若对于,有,则称在上单调递减,称为单调递减区间。2、导数与单调区间的联系(1)函数在可导,那么在上单调递增此结论可以这样理解:对于递增的函数,其图像有三种类型:,无论是哪种图形,其上面任意一点的切线斜率均大于零。等号成立的情况:一是单调区间分界点导数有可能为零,例如:的单调递增区间为,而,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为在处的导数为0,但是位于单调区间内。(2)函数在可导,则在上单调递减(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由的符号能否推出在的单调性呢?如果不是常值函数,那么便可由导数的符号对应推出函数的单调性。(这也是求函数单调区间的理论基础)3、利用导数求函数单调区间的步骤(1)确定函数的定义域1(2)求出的导函数(3)令(或),求出的解集,即为的单调增(或减)区间(4)列出表格4、求单调区间的一些技巧(1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。另一方面通过定义域对取值的限制,对解不等式有时会起到简化的作用,方便单调区间的求解(2)在求单调区间时优先处理恒正恒负的因式,以简化不等式(3)一般可令,这样解出的解集就是单调增区间(方便记忆),若...
发表评论取消回复