微专题27双星与多星问题【核心要点提示】(1)核心问题是“谁”提供向心力的问题.(2)“双星问题”的隐含条件是两者的向心力相同、周期相同、角速度相同;双星中轨道半径与质量成反比;(3)多星问题中,每颗行星做圆周运动所需的向心力是由它们之间的万有引力的合力提供,即F合=m,以此列向心力方程进行求解.【微专题训练】【例题1】(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100s时,它们相距约400km,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星()A.质量之积B.质量之和C.速率之和D.各自的自转角速度BC[两颗中子星运动到某位置的示意图如图所示每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得=m1ω2r1①=m2ω2r2②l=r1+r2③由①②③式得=ω2l,所以m1+m2=,质量之和可以估算.由线速度与角速度的关系v=ωr得v1=ωr1④v2=ωr2⑤由③④⑤式得v1+v2=ω(r1+r2)=ωl,速率之和可以估算.质量之积和各自自转的角速度无法求解.]【变式1】2016年2月12日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预测,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”。双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a、b两颗星组成,这两颗星绕它们连线的某一点1在万有引力作用下做匀速圆周运动,测得a星的周期为T,a、b两颗星的距离为l,a、b两颗星的轨道半径之差为Δr(a星的轨道半径大于b星的轨道半径)...
发表评论取消回复