微专题08牛顿运动定律应用之瞬时性加速度问题【核心要点提示】1.刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.2.弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.【核心方法点拨】分析此类问题要注意系统状态变化前后受力分析的比较【微专题训练】【经典例题选讲】【例题】(多选)如图所示,两轻质弹簧a、b悬挂一质量为m的小球,整体处于平衡状态,弹簧a与竖直方向成30°角,弹簧b与竖直方向成60°角,a、b两弹簧的形变量相等,重力加速度为g,则、()A.弹簧a、b的劲度系数之比为∶2B.弹簧a、b的劲度系数之比为∶1C.若弹簧a下端与小球松脱,则松脱瞬间小球的加速度大小为gD.若弹簧b下端与小球松脱,则松脱瞬间小球的加速度大小为[解析]对小球受力分析,受到弹簧a的拉力、弹簧b的拉力和重力,三力平衡,故有Ta=mgcos30°=kaΔx,Tb=mgsin30°=kbΔx,故==,A错误,B正确;若弹簧a下端与小球松脱,松脱瞬间弹簧b的弹力不变,故小球所受重力和弹簧b的弹力的合力与Ta大小相等、方向相反,故a==g,若弹簧b下端与小球松脱,则松脱瞬间a弹簧的弹力不变,故小球所受重力和a弹簧弹力的合力与Tb大小相等、方向相反,故小球的加速度a′==g,C错误,D正确。【答案】BD【变式】如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,...
发表评论取消回复