专题06直线和圆(新课标全国Ⅰ卷)1.过点与圆相切的两条直线的夹角为,则()A.1B.C.D.【答案】B【详解】方法一:因为,即,可得圆心,半径,过点作圆C的切线,切点为,因为,则,可得,则,,即为钝角,所以;法二:圆的圆心,半径,过点作圆C的切线,切点为,连接,可得,则,因为且,则,即,解得,即为钝角,则,且为锐角,所以;方法三:圆的圆心,半径,若切线斜率不存在,则切线方程为,则圆心到切点的距离,不合题意;若切线斜率存在,设切线方程为,即,则,整理得,且设两切线斜率分别为,则,可得,所以,即,可得,则,且,则,解得.故选:B.(新课标全国Ⅱ卷)2.已知直线与交于A,B两点,写出满足“面积为”的m的一个值______.【答案】(中任意一个皆可以)【详解】设点到直线的距离为,由弦长公式得,所以,解得:或,由,所以或,解得:或.故答案为:(中任意一个皆可以).(全国乙卷数学(文))3.已知实数满足,则的最大值是()A.B.4C.D.7【答案】C【详解】法一:令,则,代入原式化简得,因为存在实数,则,即,化简得,解得,故的最大值是,法二:,整理得,令,,其中,则,,所以,则,即时,取得最大值,法三:由可得,设,则圆心到直线的距离,解得故选:C.(全国乙卷数学(文)(理))4.在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线:(为参数,).(1)写出的直角坐标方程;(2)若直线既与没有公共点,也与没有公共点,求的取值范围.【答案】(1)(2)【详解】(1)因为,即,可得,整理得,表示以为圆心,半径为1的圆,又因为,且,则,则,故....
发表评论取消回复