【英文原版】Gemma技术报告-16页

【英文原版】Gemma技术报告-16页_第1页
【英文原版】Gemma技术报告-16页_第2页
【英文原版】Gemma技术报告-16页_第3页
2024-02-21Gemma:OpenModelsBasedonGeminiResearchandTechnologyGemmaTeam,GoogleDeepMind11SeeContributionsandAcknowledgmentssectionforfullauthorlist.Pleasesendcorrespondencetogemma-1-report@google.com.ThisworkintroducesGemma,afamilyoflightweight,state-of-theartopenmodelsbuiltfromtheresearchandtechnologyusedtocreateGeminimodels.Gemmamodelsdemonstratestrongperformanceacrossacademicbenchmarksforlanguageunderstanding,reasoning,andsafety.Wereleasetwosizesofmodels(2billionand7billionparameters),andprovidebothpretrainedandfine-tunedcheckpoints.Gemmaoutperformssimilarlysizedopenmodelson11outof18text-basedtasks,andwepresentcomprehensiveevaluationsofsafetyandresponsibilityaspectsofthemodels,alongsideadetaileddescriptionofmodeldevelopment.WebelievetheresponsiblereleaseofLLMsiscriticalforimprovingthesafetyoffrontiermodels,andforenablingthenextwaveofLLMinnovations.Introductionmentmethodologies.WepresentGemma,afamilyofopenmodelsGemmaadvancesstate-of-the-artperformancebasedonGoogle’sGeminimodels(GeminiTeam,relativetocomparable-scale(andsomelarger),2023).openmodels(Almazroueietal.,2023;Jiangetal.,2023;Touvronetal.,2023a,b)acrossaWetrainedGemmamodelsonupto6Tto-widerangeofdomainsincludingbothautomatedkensoftext,usingsimilararchitectures,data,benchmarksandhumanevaluation.Exampledo-andtrainingrecipesastheGeminimodelfamily.mainsincl...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

发表评论取消回复

参与评论可获取积分奖励  
洞见文库+ 关注
实名认证
内容提供者

洞见文库专业提供各类研报范文等文档资料下载

确认删除?
回到顶部