投资逻辑:目前大模型能力仍处于EmergingAGI水平,就模型成熟度而言,语言大模型>多模态大模型>具身智能大模型。根据DeepMind的定义,AGI应能够广泛学习、执行复杂多步骤的任务。模型的AGI水平可分为Level-0至Level-5共6个等级,现阶段大模型在处理任务的广泛性上还有很大提升空间,即使是国际顶尖的大模型也仍处于Level-1EmergingAGI阶段。不同类型大模型成熟度差异较大,目前大语言模型能力相对完善,落地应用场景丰富,底层技术路线较为成熟;多模态大模型已经能够面向B\C端推出商业化产品,但细节优化空间较大;具身智能类大模型还在探索阶段,技术路线尚不清晰。现阶段讨论AGI能力提升仍需聚焦于多模态大模型的训练和应用。目前学界和业界重点关注ScalingLaw的有效性,以及模型算法的可能改进方向。ScalingLaw仍有深入空间。根据OpenAI研究,随模型参数量、数据集规模、训练使用的计算量增加,模型性能能够稳步提高,即ScalingLaw。从训练样本效率、训练时长、各类资源对模型的贡献维度来看,目前ScalingLaw仍是提高模型性能的最优方法。OpenAI测算在模型参数量扩展到88万亿及之前,ScalingLaw依旧有效,则中短期仍可延续此路线进行训练。模型骨干网络架构尚未演变至终局,微调及稀疏结构成为提升模型性能的重要方法。目前主流大模型均采用Transformer作为底层骨干网络,但针对编码器\解码器选择、多模态融合、自注意力机制等方面的探索仍在持续推进。微调使用更小的数据量、更短的训练时间,让模型能够适应下游任务,以降低边际落地成本。以MoE为代表的稀疏结构通过分割输入任务并匹配专家模型,能够提高模型的整体性能...
发表评论取消回复