Beta猎手系列之七:追上投资热点——基于LLM的产业链图谱智能化生成-20240115-国金证券-22页

Beta猎手系列之七:追上投资热点——基于LLM的产业链图谱智能化生成-20240115-国金证券-22页_第1页
Beta猎手系列之七:追上投资热点——基于LLM的产业链图谱智能化生成-20240115-国金证券-22页_第2页
Beta猎手系列之七:追上投资热点——基于LLM的产业链图谱智能化生成-20240115-国金证券-22页_第3页
本篇报告是国金证券金融工程团队围绕大语言模型开展的多项深度前瞻研究第八篇。在本报告中,我们借鉴智能体(Agent)这一概念,将大语言模型应用到产业链梳理任务中,并实现了对投资概念的拆解以及相关标的个股的推荐。OpenAI在首届开发者大会上推出GPTs功能,它们能自主寻找多步解决问题的方案并行动。我们将具有以上功能的模型称为“智能体”。智能体核心要素可以表示为“大语言模型+规划+工具+记忆”:大语言模型作为内核提供理解、推理与生成能力;规划给智能体带来问题逐步求解能力,实现从“一问一答”向“自主思考”转变;工具赋予智能体与环境交互的能力;记忆则帮助它完成多轮的思考与行动。基于大语言模型的智能体决策逻辑可以简化为“感知→规划→行动”。其中,感知是指智能体收集信息并整合为模型输入,规划是指智能体做出具体决策并给出行动指令,行动则是按照规划行动的步骤。智能体观察到行动的反馈并放入记忆,成为下一轮感知的基础,构成完整的决策过程。在此之前,AutoGPT与Langchain等项目已成功实现了单一智能体的部署并给出了智能体的设计蓝图,当前的研究前沿方向是多智能体交互部署。我们借鉴AutoGPT的思路构建了应用于产业链梳理的“产业链Agent”。尽管大语言模型能掌握基础的产业链知识,但无法直接梳理完整产业链。我们为产业链Agent完善产业链推理的框架,包括上/下游供需关系的推理、末端产品判断以及产品重要性判断,让智能体自我迭代,最终完成对所有节点的推理与判断。以智能手机上游为例,产业链Agent梳理结果与Wind智能手机产业链二者整体结构一致。我们还赋予产业链Agent新闻检索的能力,增强...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

发表评论取消回复

参与评论可获取积分奖励  
悟空文库+ 关注
实名认证
内容提供者

悟空文库-海量文档资源下载,专业/极致/认真

确认删除?
回到顶部